Comparison of artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models in simulating polygalacturonase production

Yükleniyor...
Küçük Resim

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

North Carolina State Univ Dept Wood & Paper Sci

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The artificial neural network (ANN) method was used in comparison with the adaptive neuro-fuzzy inference system (ANFIS) to describe polygalacturonase (PG) production by Bacillus subtilis in submerged fermentation. ANN was evaluated with five neurons in the input layer, one hidden layer with 7 neurons, and one neuron in the output layer. Five fermentation variables (pH, temperature, time, yeast extract concentration, and K2HPO4 concentration) served as the input of the ANN and ANFIS models, and the polygalacturonase activity was the output. Coefficient of determination (R-2) and root mean square values (RMSE) were calculated as 0.978 and 0.060, respectively for the best ANFIS structure obtained in this study. The R-2 and RMSE values were computed as 1.00 and 0.030, respectively for the best ANN model. The results showed that the ANN and ANFIS models performed similarly in terms of prediction accuracy.

Açıklama

Anahtar Kelimeler

Back-Propagation Network, Artificial Intelligence, Polygalacturonase, Adaptive Neuro-Fuzzy Inference System

Kaynak

Bioresources

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

11

Sayı

4

Künye