Creativity in the domain of mathematics
dc.authorid | 0000-0003-4246-2070 | |
dc.authorid | 0000-0002-9802-2499 | |
dc.authorid | 0000-0002-9802-2499 | |
dc.authorid | 0000-0002-9802-2499 | |
dc.authorid | 0000-0001-5944-937 | |
dc.contributor.author | Sak, Ugur | |
dc.contributor.author | Ayvaz, Ülkü | |
dc.contributor.author | Bal-Sezerel, Bilge | |
dc.contributor.author | Özdemir, Nazmiye Nazlı | |
dc.date.accessioned | 2021-06-23T18:51:36Z | |
dc.date.available | 2021-06-23T18:51:36Z | |
dc.date.issued | 2017 | |
dc.department | BAİBÜ, Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi | en_US |
dc.description.abstract | In this chapter, we first review mathematical creativity with an emphasis on the nature of novelty in mathematics. We compare mathematical creativity to creativity in other domains, provide examples of novelty, and contrast these to novelty in other domains and explain types of creativity in mathe matics based on perspectives in philosophy. All the theoretical perspectives we reviewed led us to synthesize that mathematical creativity involves knowledge production which is either discovery or invention. The chapter also covers pioneers and their contributions to the study of mathematical creativity, such as Polya and Krutetskii. The last part of the chapter includes a review and critique of the assessment of mathematical creativity, such as paper and pencil assessments, observations and interviews, and self assessment. © Cambridge University Press 2017. All rights reserved. | en_US |
dc.identifier.doi | 10.1017/9781316274385.016 | |
dc.identifier.endpage | 298 | en_US |
dc.identifier.isbn | 9781316274385 | |
dc.identifier.isbn | 9781107110182 | |
dc.identifier.scopus | 2-s2.0-85048796889 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 276 | en_US |
dc.identifier.uri | https://doi.org/10.1017/9781316274385.016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12491/3895 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Ayvaz, Ülkü | |
dc.language.iso | en | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.ispartof | The Cambridge Handbook of Creativity across Domains | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Mathematical Creativity | en_US |
dc.title | Creativity in the domain of mathematics | en_US |
dc.type | Book Chapter | en_US |