On convergence of nonlinear singular integral operators with non-isotropic kernels

Yükleniyor...
Küçük Resim

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Univ Babes-Bolyai

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Here we give some approximation theorems concerning pointwise convergence and rate of pointwise convergence of nonlinear singular integral operators with non-isotropic kernels of the form T-omega,T-lambda(f)(s) = integral(Rn) K-omega (vertical bar s - t vertical bar(lambda), f(t)) dt, where the kernel function satisfies Lipschitz condition and some singularity assumptions. Here Lambda is a non-empty set of indices, 0 is an accumulation point of Lambda and vertical bar s - t vertical bar(lambda) denotes the non-isotropic distance between the points s, t is an element of R-n.

Açıklama

Anahtar Kelimeler

Nonlinear Singular Integral, Non-Isotropic Distance, Lipschitz Condition

Kaynak

Studia Universitatis Babes-Bolyai Mathematica

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

60

Sayı

2

Künye