On convergence of nonlinear singular integral operators with non-isotropic kernels
Yükleniyor...
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Univ Babes-Bolyai
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Here we give some approximation theorems concerning pointwise convergence and rate of pointwise convergence of nonlinear singular integral operators with non-isotropic kernels of the form T-omega,T-lambda(f)(s) = integral(Rn) K-omega (vertical bar s - t vertical bar(lambda), f(t)) dt, where the kernel function satisfies Lipschitz condition and some singularity assumptions. Here Lambda is a non-empty set of indices, 0 is an accumulation point of Lambda and vertical bar s - t vertical bar(lambda) denotes the non-isotropic distance between the points s, t is an element of R-n.
Açıklama
Anahtar Kelimeler
Nonlinear Singular Integral, Non-Isotropic Distance, Lipschitz Condition
Kaynak
Studia Universitatis Babes-Bolyai Mathematica
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
60
Sayı
2