A stack based multimodal machine learning model for breast cancer diagnosis

dc.authorid0000-0002-3325-4731
dc.authorscopusid57205574405
dc.authorscopusid7006211475
dc.contributor.authorKayıkçı, Şafak
dc.contributor.authorKhoshgoftaar, Taghi
dc.date.accessioned2024-09-25T19:42:53Z
dc.date.available2024-09-25T19:42:53Z
dc.date.issued2022
dc.departmentBAİBÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2022 -- 9 June 2022 through 11 June 2022 -- Ankara -- 180434en_US
dc.description.abstractBreast cancer is the most frequent type of cancer, and it has a dismal prognosis. It represents about 30 % (or 1 in 3) of all new female cancers each year. As a result, there is a pressing need to create efficient and quick computational approaches for breast cancer prognosis. In this study, a multimodal deep learning model that enables decision-making on data from multiple data sources is proposed and used with three different classifiers. We achieved 82% accuracy in decision trees, 90% in random forests and 88% in support vector machines. We have seen that the results we get from the combined data are more successful than the distinct convolutional neural network models we have run separately before. Combining diverse data sources for the successful application of multimodal deep learning algorithms appears to be an effective strategy to improve human breast cancer prediction performance. © 2022 IEEE.en_US
dc.identifier.doi10.1109/HORA55278.2022.9800004
dc.identifier.endpage5
dc.identifier.isbn978-166546835-0
dc.identifier.scopus2-s2.0-85133959154en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1
dc.identifier.urihttps://doi.org/10.1109/HORA55278.2022.9800004
dc.identifier.urihttps://hdl.handle.net/20.500.12491/12329
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKayıkçı, Şafak
dc.institutionauthorid0000-0002-3325-4731
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzYK_20240925en_US
dc.subjectBreast Cancer Predictionen_US
dc.subjectMulti-Dimensional Dataen_US
dc.subjectMultimodal Deep Learningen_US
dc.titleA stack based multimodal machine learning model for breast cancer diagnosisen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
safak-kayikci.pdf
Boyut:
566.19 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text