Evrendilek, FatihÇelik, Naci Ali2021-06-232021-06-2320131543-50751543-5083https://doi.org/10.1080/15435075.2012.732634https://hdl.handle.net/20.500.12491/7416Modeling of land surface radiation budget and its components is essential to a better understanding of soil-vegetation-atmosphere interactions. Time Delay Neural Network (TDNN) and Time Lag Recurrent Network (TLRN) models were used to emulate all the hourly surface radiation components for a temperate peatland during day and night under all-sky and -surface conditions. Sensitivity analyses of full versus reduced models, daytime versus nighttime periods, and TDNN versus TLRN models were carried out using training-, cross-validation, and testing-derived metrics of root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R-2) for each of the components. The full daytime temporal neural network models performed best based on RMSE of 2.3 W m(-2) in downwelling longwave radiation to 112.2 W m(-2) in upwelling shortwave radiation; R-2 of 0.52 in downwelling longwave radiation to 0.88 in net shortwave radiation and net radiation; and MAE of 1.73 W m(-2) in downwelling longwave radiation to 90.57 W m(-2) in upwelling shortwave radiation. The best nighttime TDNN models led to RMSE values that ranged from 4.4 W m(-2) in downwelling longwave radiation to 9.3 W m(-2) in upwelling longwave radiation; R-2 values that ranged from 0.38 in net longwave radiation to 0.60 in downwelling longwave radiation; and MAE values that ranged from 4.1 W m(-2) in downwelling longwave radiation to 8.1 W m(-2) in upwelling longwave radiation. Temporal neural networks used in this study appear to be a promising approach to predict nonlinear behaviors of the daytime and nighttime surface radiation components.eninfo:eu-repo/semantics/closedAccessLongwave RadiationPeatlandShortwave RadiationTime Delay Neural NetworkTime Lag Recurrent NetworkDynamic emulations of surface radiation components during day and night under all sky and surface conditions using temporal neural networksArticle10.1080/15435075.2012.7326341099669832-s2.0-84879221227Q2WOS:000320183500006Q2