Öztürk, AliÖztürk, Tahire ÖzenYılmaz, Erol2021-06-232021-06-2320191301-40482147-835Xhttps://doi.org/10.16984/saufenbilder.483138https://app.trdizin.gov.tr/makale/TXpFek5qSTNOdz09https://hdl.handle.net/20.500.12491/2765Let S be an associative ring with identity and N be a right S-module. We define the non-maximal graph µ(N) of N with all non-trivial submodules of N as vertices and two distinct vertices A, B are adjacent if and only if A + B is not a maximal submodule of N. In this paper, we investigate the connectivity, completeness, girth, domination number, cut edges, perfectness and r-partite of µ(N). Moreover, we give connections between the graph-theoretic properties of µ(N) and algebraic properties of N.eninfo:eu-repo/semantics/openAccessNon-maximal SubmoduleConnected and Complete GraphClique and Chromatic NumberOn a graph of submodulesArticle10.16984/saufenbilder.483138233396402313627