Karslı, HarunVural, Mehmet2021-06-232021-06-2320150252-19382065-961Xhttps://hdl.handle.net/20.500.12491/8333http://www.cs.ubbcluj.ro/~studia-m/2015-2/11-Karsli-Vural-final.pdfHere we give some approximation theorems concerning pointwise convergence and rate of pointwise convergence of nonlinear singular integral operators with non-isotropic kernels of the form T-omega,T-lambda(f)(s) = integral(Rn) K-omega (vertical bar s - t vertical bar(lambda), f(t)) dt, where the kernel function satisfies Lipschitz condition and some singularity assumptions. Here Lambda is a non-empty set of indices, 0 is an accumulation point of Lambda and vertical bar s - t vertical bar(lambda) denotes the non-isotropic distance between the points s, t is an element of R-n.eninfo:eu-repo/semantics/closedAccessNonlinear Singular IntegralNon-Isotropic DistanceLipschitz ConditionOn convergence of nonlinear singular integral operators with non-isotropic kernelsArticle602267275WOS:000453592700012N/A