Ercan, ZaferÖnal, Süleyman2021-06-232021-06-2320080092-7872https://doi.org/10.1080/00927870701776946https://hdl.handle.net/20.500.12491/6309Conference on Carthapos 2006 -- 2006 -- Tunis, TUNISIALet X-1 I X-2,..., X-n be realcompact spaces and Z he a topological space. Let pi : C(X-1)X C(X-2) X... X C(X-n)-> C(Z) be a Riesz n-morphism. We show that there exist functions sigma(i) : Z -> X-i (i = 1, 2,..., n) and w epsilon C(Z) such that pi(f(1), f(2),..., f(n)) = Wf(1) o sigma(1)f(2)o sigma(2)... fno sigma(n) and sigma(1), sigma(2),....,sigma(n) are continuous on {z : w(z)not equal 0}. This fact extends a result in Boulabiar (2002) and leads to one of the main results in Boulabiar (2004) with a more elementary proof.eninfo:eu-repo/semantics/openAccessF-algebrasRealcompact SpaceRiesz N-morphismA characterization of riesz n-morphisms and applicationsConference Object10.1080/00927870701776946363111511202-s2.0-45849101742Q2WOS:000254393300024Q4