On semicommutative modules and rings

Yükleniyor...
Küçük Resim

Tarih

2007

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We say a module MR a semicommutative module if for any m ? M and any a ? R, ma = 0 implies mRa = 0. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and MR be a p.p.-module, then MR is a semicommutative module iff MR is an Armendariz module. For any ring R, R is semicommutative iff A(R, ?) is semicommutative. Let R be a reduced ring, it is shown that for number n ? 4 and k = [n/2], Tnk (R) is semicommutative ring but Tnk-1 (R) is not.

Açıklama

Anahtar Kelimeler

Baer rings (modules) and qausi-Baer rings (modules) and semicommutative rings (modules), Reduced rings (modules)

Kaynak

Kyungpook Mathematical Journal

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

47

Sayı

1

Künye