On semicommutative modules and rings
Yükleniyor...
Dosyalar
Tarih
2007
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We say a module MR a semicommutative module if for any m ? M and any a ? R, ma = 0 implies mRa = 0. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and MR be a p.p.-module, then MR is a semicommutative module iff MR is an Armendariz module. For any ring R, R is semicommutative iff A(R, ?) is semicommutative. Let R be a reduced ring, it is shown that for number n ? 4 and k = [n/2], Tnk (R) is semicommutative ring but Tnk-1 (R) is not.
Açıklama
Anahtar Kelimeler
Baer rings (modules) and qausi-Baer rings (modules) and semicommutative rings (modules), Reduced rings (modules)
Kaynak
Kyungpook Mathematical Journal
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
47
Sayı
1