Characterization of caesium carbonate-doped porous non-activated graphitic (Hexagonal) boron nitride and adsorption properties
Yükleniyor...
Dosyalar
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, the effect of caesium carbonate with a balanced strong base characteristic on the morphology crystallinity, porosity and specific surface area of graphitic boron nitride is reported. The mass ratio of caesium carbonate was adjusted as 0.9 and 1.2 at the constant mass of urea and B2O3 in a mixture of 2 g and 1 g, respectively. The products were characterized by using infrared spectroscopy (FTIR), powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM) and specific surface area (SSA) and porosity analysis. gBN formation determined by XRD analysis was accelerated and improved ordered lateral polymorph in which graphitization index was found to be very close to the graphite as 2.02 and 1.84 as for 0.9 and 1.2 g dopant level, respectively. The average grain size of the synthesized undoped, 0.9 and 1.2 g caesium carbonate-doped samples had 3.61, 10.84 and 12.00 nm, respectively. The porous nature of the product has been confirmed by the SEM and evolution of gaseous material from the surface. The EDX results reveal that the elements used for the preparation of samples distribute homogeneously and neither caesium nor carbon atoms enter into the crystal structure indicating the purity of samples. The SSA and porosity parameters are found to be about 77.1 m(2)/g and 0.1-100 nm range, respectively. Caesium carbonate propagated the graphitic nature and crystallinity of BN at a lower temperature than O'Connor method due to rise in electronic interaction as a basic compound.
Açıklama
Anahtar Kelimeler
Graphitic Boron Nitride, Caesium Carbonate, O'Connor Method, Characterization, Specific Surface Area, Porous Structure
Kaynak
Arabian Journal For Science And Engineering
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
46
Sayı
6