Detecting snow layer on solar panels using deep learning

dc.authorid0000-0002-9735-5697en_US
dc.contributor.authorEyecioğlu, Önder
dc.contributor.authorÖztürk, Oktay
dc.contributor.authorHangün, Batuhan
dc.date.accessioned2023-07-14T10:30:58Z
dc.date.available2023-07-14T10:30:58Z
dc.date.issued2021en_US
dc.departmentBAİBÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractRenewable energy now plays a significant role in meeting rising energy demand while protecting the environment. Solar energy, generated by enormous solar panel farms, is a rapidly developing environmentally friendly technology. However, its efficiency degrades due to some factors. The climate is one of the most impactful factors that affect the electricity generation of a photovoltaic cell-especially countries with snowy climates face those downside effects. Hence, detection and removal of the snow layer on the solar panels are crucial. Firstly, most of the snow detection approaches are based on time series or momentary sensor data. Secondly, the removal of snow is based on surface coatings, heating, and mechanical clearing. Nowadays, vision-based solutions for detecting and removal of snow are trending. Since eliminating the human factor is a priority in physical labor, drones are suitable for vision-based operations. This paper presents a new deep learning-based approach that can be deployed on drones for detecting snowy conditions on solar panels using deep learning-based algorithms. As they are state-of-the-art neural networks in computer vision applications, ResNet-50, VGG-19, and InceptionV3 have been selected. In order to increase generalization in the training phase, we augmented the dataset using different image manipulation techniques. Our results show that we obtain 100%, 99%, and 91% Fl-Score from InceptionV3, VGG-19, and ResNet-50 respectively.en_US
dc.identifier.citationOzturk, O., Hangun, B., & Eyecioglu, O. (2021, September). Detecting snow layer on solar panels using deep learning. In 2021 10th International Conference on Renewable Energy Research and Application (ICRERA) (pp. 434-438). IEEE.en_US
dc.identifier.doi10.1109/ICRERA52334.2021.9598700
dc.identifier.endpage5en_US
dc.identifier.isbn978-1-6654-4524-5
dc.identifier.scopus2-s2.0-85123191797en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICRERA52334.2021.9598700
dc.identifier.urihttps://hdl.handle.net/20.500.12491/11291
dc.identifier.wosWOS:000761616700074en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorEyecioğlu, Önder
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof10th IEEE International Conference on Renewable Energy Research and Applications (Icrera 2021)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectTransfer Learningen_US
dc.subjectSolar Panelsen_US
dc.subjectSolar Panel Defect Detectionen_US
dc.subjectResNet-50, VGG-19en_US
dc.titleDetecting snow layer on solar panels using deep learningen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
oktay-ozturk.pdf
Boyut:
1.88 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam metin/Full text
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: