Optimization of external wall insulation thickness in buildings using response surface methodology
Yükleniyor...
Dosyalar
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Buildings account for one-third of the world's energy consumption. Reducing this consumption is only possible by making buildings more energy efficient. One of the most efficient methods for increasing the energy efficiency of buildings is thermal insulation. Fuel consumption and therefore emission values can be reduced by achieving adequate thermal insulation of buildings. In this study, the optimum insulation thicknesses for cities in the various climatic regions of Turkey were determined using statistical methods. Insulation thickness, thermal conductivity, heating degree-days (HDD), and fuel type were determined as variable parameters, and the optimum insulation thickness and total heating cost for cities in four different climate zones were determined using the response surface method (RSM). The effect ratios for each parameter on total costs were also reviewed and analyzed using the RSM method. Mathematical models have been developed that estimate the total cost of natural gas, coal, and fuel oil based on thermal insulation thickness, thermal conductivity, and heating degree days. With the mathematical models presented in the study, dependent parameters (total heating cost) can be obtained as a function of independent parameters (fuel type, thermal conductivity of insulation material, and HDD). The models provide a calculation of direct costs for different types of fuels and provide a basis for various research. As a result, the optimum insulation thicknesses for Izmir (HDD: 1781), Istanbul (HDD: 2531), Ankara (HDD: 3303), and Erzurum (HDD: 5393) are 0.059 m, 0.066 m, 0.075 m, and 0.080 m, respectively; reductions in annual total costs were found to be 40.7%, 39.7%, 41.9%, and 50.1%, respectively.
Açıklama
Anahtar Kelimeler
Insulation, Response Surface Methodology, Climate Zones, Residential Buildings, Energy-Consumption, Design
Kaynak
International Journal of Energy and Environmental Engineering
WoS Q Değeri
N/A
Scopus Q Değeri
Q2
Cilt
13
Sayı
4
Künye
Ozbek, K., Gelis, K., & Ozyurt, O. (2022). Optimization of external wall insulation thickness in buildings using response surface methodology. International Journal of Energy and Environmental Engineering, 13(4), 1367-1381.