Entanglement dynamics in atom-field interaction in the presence of noise: a special application of the Burshtein equation
Yükleniyor...
Dosyalar
Tarih
2008
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The entanglement dynamics in a system of the interaction of an atom with a single-mode thermal field in the presence of noise is studied by the Jaynes-Cummings model. Two-state random phase telegraph noise is considered as the noise in the interaction and an exact solution to the model under this noise is obtained by the Burshtein equation. Although the Burshtein equation is applicable for laser-atom interactions, it is shown that it can be applied to atom-thermal field system as a special case. The solution is used to investigate the entanglement dynamics of the atom-field interaction by calculating a lower bound on concurrence. It is found that the entanglement is a non monotonic function of the intensity of the noise. The degree of the entanglement decreases to a minimum value for an optimal intensity of the noise and then increases for a sufficiently large intensity. Moreover, intense noise may generate stronger entanglement compared with the absence of noise.
Açıklama
Anahtar Kelimeler
Atom-field
Kaynak
European Physical Journal D
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
48
Sayı
3