Kaynak kısıtlı proje çizelgelemede indirgenmiş nakit akışı maksimizasyonu için bir genetik algoritma yaklaşımı
Yükleniyor...
Tarih
2000
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada kaynak kısıtlı proje çizelgelemede indirgenmiş nakit akışını ençoklamak için geliştirilen bir genetik algoritma sunulmaktadır. Problem hem yenilenebilir hem de yenilenemez kaynaklar göz önüne alınarak tanımlanmaktadır. Kaynakların uygulanmasında sonlu sayıda mod söz konusudur. Genetik algoritmada, çok-bileşenli, düzgün, sıralama temelli bir çaprazlama operatörü kullanılmıştır. Bu çaprazlama operatörünün öncüllük kısıtlarını ihlal etmeyişi önemli bir avantaj sağlamaktadır. Genetik algoritmanın parametrelerinin saptanması için bir meta-seviye genetik algoritma uygulanmıştır. Önerilen algoritmanın sınanması için teknik yazında mevcut 93 problemlik bir test problem kümesi kullanılmıştır. Ayrıca, salt yenilenebilir kaynaklar problemi için, özel amaçlı bir algoritma ile karşılaştırma yapılmış ve önerilen algoritmanın özellikle büyük boyutlu problemlerde başarılı olduğu gösterilmiştir.
In this paper, a genetic algorithm (GA) is presented to maximize the discounted cash flow in multi-mode resource constrained project scheduling problem. The problem is defined to include both renewable and nonrenewable resources. A multi-component uniform order-based crossover operator (MCUOX) is employed. An advantage of MCUOX is that it does not violate precedence constraints. A meta-GA is employed to determine the parameters of the GA. A set of 93 problems from the literature is used to test the GA. Furthermore, for the problem with only renewable resources present, the GA approach is compared with a domain specific heuristic and is shown to outperform it especially for large size problems.
In this paper, a genetic algorithm (GA) is presented to maximize the discounted cash flow in multi-mode resource constrained project scheduling problem. The problem is defined to include both renewable and nonrenewable resources. A multi-component uniform order-based crossover operator (MCUOX) is employed. An advantage of MCUOX is that it does not violate precedence constraints. A meta-GA is employed to determine the parameters of the GA. A set of 93 problems from the literature is used to test the GA. Furthermore, for the problem with only renewable resources present, the GA approach is compared with a domain specific heuristic and is shown to outperform it especially for large size problems.
Açıklama
Anahtar Kelimeler
Genetik Algoritma, Genetic Algorithm
Kaynak
Endüstri Mühendisliği
WoS Q Değeri
Scopus Q Değeri
Cilt
11
Sayı
2