A new approach for the reuse of scrap carbon fiber in high-added value continuous fiber reinforced composite structures
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study proposes an innovative processing approach for high-added value hybrid fiber-reinforced composite structures by reusing scrap carbon fiber (CF). Thermoplastic prepregs were produced via wet-laid method using chopped polyamide 6.6 fibers as matrix and short scrap CFs as the reinforcing phase. These prepregs were then hot stacked with woven glass fabrics, forming a novel hybrid lightweight composite laminate. Silane treatment was used to improve the adhesion of glass fabric to the novel wet-laid scrap CF/PA6.6 prepregs. Tensile, flexural, dynamic-mechanical, and morphological properties of the composites were examined to characterize the effectiveness of the hybridization of short scrap CFs and glass fabric. The results showed that short scrap CF in the laminates increased the tensile strength up to 30 % and flexural strength up to 60 %. Moreover, silane surface modification of the glass fabric yielded a 140 % improvement in the flexural strength of scrap CF/PA6.6 prepreg-glass fabric hybrid laminates.
Açıklama
Anahtar Kelimeler
Carbon Fibres (A), Laminates (A), Interface, Silane Coupling Agents, Mechanical-Properties, ABS
Kaynak
Composites Part A: Applied Science and Manufacturing
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
163
Sayı
Künye
Koçoğlu, H., Kodal, M., Altan, M. C., Özçelik, B., & Özkoç, G. (2022). A new approach for the reuse of scrap carbon fiber in high-added value continuous fiber reinforced composite structures. Composites Part A: Applied Science and Manufacturing, 163, 107272.