Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Xu, Guangxia" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Aliasing black box adversarial attack with joint self-attention distribution and confidence probability
    (Pergamon-Elsevier Science Ltd, 2023) Liu, Jun; Jin, Haoyu; Xu, Guangxia; Lin, Mingwei; Wu, Tao; Polat, Kemal
    Deep neural networks (DNNs) are vulnerable to adversarial attacks, in which a small perturbation to samples can cause misclassification. However, how to select important words for textual attack models is a big challenge. Therefore, in this paper, an innovative score-based attack model is proposed to solve the important words se-lection problem for textual attack models. To this end, the generation of semantically adversarial examples in this model is adopted to mislead a text classification model. Then, this model integrates the self-attention mechanism and confidence probabilities for the selection of the important words. Moreover, an alternative model similar to the transfer attack is introduced to reflect the correlation degree of words inside the texts. Finally, adversarial training experimental results demonstrate the superiority of the proposed model.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim