Yazar "Turan, Ferzat" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genome composition analysis of multipartite BNYVV reveals the occurrence of genetic re-assortment in the isolates of asia minor and thrace(Nature Publishing Group, 2020) Özmen, Canan Yüksel; Khabbazi, Saber Delpasand; Khabbazi, Afsaneh Delpasand; Gürel, Songül; Kaya, Rıza; Oğuz, Muhammet Cağrı; Turan, Ferzat; Gürel, EkremBeet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.Öğe Utilization of sucrose during cocultivation positively affects Agrobacterium-mediated transformation efficiency in sugar beet (Beta Vulgaris L.)(2019) Gürel, Songül; Oğuz, Muhammet Çağrı; Turan, Ferzat; Kazan, Kemal; Özmen, Canan Yüksel; Gürel, Ekrem; Ergül, AliSugar beet (Beta vulgaris L.) is one of the most important industrial crops throughout world. With the availability of suitable genetic transformation technologies, the yield, quality, and stress tolerance of sugar beet could be improved significantly. However, low transformation efficiencies seriously limit the application of molecular technologies to the genetic improvement of sugar beet. With the aim of improving gene transfer techniques for sugar beet, the effect of different sucrose concentrations during cocultivation on the initial Agrobacterium-mediated transformation efficiencies in sugar beet was tested. To develop an efficient experimental system through which the effect of sucrose could be tested, first, a prolific regeneration system was optimized by testing the effect of different plant growth regulators on in vitro regeneration and rooting efficiencies from sugar beet cotyledonary node explants. The highest mean number of regenerated shoots per explant was obtained when the cotyledonary node explants excised from young seedlings were grown on MS medium supplemented with 1.0 mg/L 6-benzylaminopurine. Using this regeneration system, the effect of different concentrations of sucrose included in the cocultivation medium on the initial genetic transformation efficiencies observed in T0 plants was tested using an Agrobacterium tumefaciens strain carrying the pBin19/35S:GUS-INT construct. The inclusion of 4.5% sucrose in the cocultivation medium resulted in significantly higher transformation (34.09%) and expression efficiencies (22.72%), confirmed by polymerase chain reaction and β-glucuronidase assays, respectively, in regenerated T0 seedlings. If translated into stably inherited transformation efficiencies, these findings could contribute to the success of genetic transformation studies in sugar beet and other crops recalcitrant to Agrobacterium-mediated transformation.