Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sinha, G. R." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Detection of lung nodule and cancer using novel mask-3 FCM and TWEDLNN algorithms
    (Elsevier Science Ltd, 2021) Tiwari, Laxmikant; Raja, Rohit; Awasthi, Vineet; Miri, Rohit; Sinha, G. R.; Alkinani, Monagi H.; Polat, Kemal
    Lung Cancer (LC) is reported as common cause of death all over the world. The detection of cancer can save many lives and help likelihood of survival. Physicians use CT (computed tomography) for examination of the cancer in lung with the help of computer-aided diagnosis (CAD) for efficient detection and diagnosis. The CAD uses different machine learning techniques and signal processing approaches but processing time and accuracy of CAD remains challenging issues. An efficient Deep Learning (DL) methodology is proposed for lung cancer detection utilizing Target based Weighted Elman DL Neural Network (TWEDLNN), and Mask Unit (MU) based 3FCM algorithm. The proposed work includes lung image segmentation using Geometric mean-based Otsu Thresholding (GOT); contrast enhancement (CE) using Modified Clip limit-based Contrasts Limited Adaptive Histograms Equalization (MC-CLAHE); Feature Extraction (FE); Classification of Features using TWEDLNN; and MU based FCM algorithm for LN (lung nodule) detection. We have used CT images of LIDC-IDRI database for the implementation. We have compared the proposed work with existing techniques to confirm that the TWEDLNN detects LC more efficiently and the accuracy of proposed work is also improved as 96%. The performance of proposed MC-CLAHE is authenticated by contrasting the proposed technique's performance with prevailing techniques, CLAHE, Gaussian, Median, and Wiener filters. The proposed method has resulted PSNR of 24.2573 and MSE value of 292.98, which are better than all existing Techniques.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Detection of sleep apnea events using electroencephalogram signals
    (ELSEVIER SCI LTD, 2021) Taran, Sachin; Bajaj, Varun; Sinha, G. R.; Polat, Kemal
    Sleep apnea is breathing disorder that leads to other disorders related to the brain and heart. This paper proposes detection of sleep apnea using a single feature Lampel-Ziv complexity of electroencephalogram (EEG) signals. Firstly, tunable-Q wavelet transform (TQWT) analyzes EEG signal into sub-bands (SBs). The Lampel-Ziv complexity (LZC) feature is computed from each SB for the discrimination of sleep apnea and control events. The Kruskal-Wallis (KW) test is applied to assess the discriminative performance of LZC feature. The statistically significant LZC feature is applied to discriminant analysis, decision tree, and ensemble classifiers for the detection of apnea events. The ensemble classification technique subspace-K-nearest neighbor provided the best classification accuracy of 96% for apnea events identification. The other classification performance measures sensitivity, specificity, F1-score, and Matthew's correlation coefficient are also attained higher values for the proposed method.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim