Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Niedbala, Gniewko" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Prediction of grain yield in wheat by CHAID and MARS algorithms analyses
    (MDPI, 2023) Demirel, Fatih; Eren, Barış; Yılmaz, Abdurrahim; Türkoğlu, Aras; Haliloğlu, Kamil; Niedbala, Gniewko
    Genetic information obtained from ancestral species of wheat and other registered wheat has brought about critical research, especially in wheat breeding, and shown great potential for the development of advanced breeding techniques. The purpose of this study was to determine correlations between some morphological traits of various wheat (Triticum spp.) species and to demonstrate the application of MARS and CHAID algorithms to wheat-derived data sets. Relationships among several morphological traits of wheat were investigated using a total of 26 different wheat genotypes. MARS and CHAID data mining methods were compared for grain yield prediction from different traits using cross-validation. In addition, an optimal CHAID tree structure with minimum RMSE was obtained and cross-validated with nine terminal nodes. Based on the smallest RMSE of the cross-validation, the eight-element MARS model was found to be the best model for grain yield prediction. The MARS algorithm proved superior to CHAID in grain yield prediction and accounted for 95.7% of the variation in grain yield among wheats. CHAID and MARS analyses on wheat grain yield were performed for the first time in this research. In this context, we showed how MARS and CHAID algorithms can help wheat breeders describe complex interaction effects more precisely. With the data mining methodology demonstrated in this study, breeders can predict which wheat traits are beneficial for increasing grain yield. The adaption of MARS and CHAID algorithms should benefit breeding research.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim