Yazar "Nezir, Saffet" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental and theoretical approaches on magnetoresistivity of Lu-Doped Y-123 superconducting ceramics(Springer, 2013) Türköz, Mustafa Burak; Nezir, Saffet; Varilci, Ahmet; Yıldırım, Gürcan; Akdoğan, Mustafa; Terzioğlu, CabirThis study discusses the change of the flux pinning mechanism, electrical and superconducting properties of Lu added YBa2Cu3O7-delta bulk superconducting ceramics prepared by the liquid ammonium nitrate and derivatives at 970 A degrees C for 20 h by means of magnetotransport measurements conducted in the magnetic filed range from 0 to 6 kG. The critical transition (both and) temperatures, residual resistivity (rho(0)), residual resistivity ratios (RRR), irreversibility fields (mu H-0(irr)), upper critical fields (mu (0) H (c2) ), penetration depths (lambda) and coherence lengths (xi) of the YBa2LuxCu3O7-delta materials are evaluated from the magnetoresistivity curves. The resistivity criteria of 10 and 90 % normal-state resistivity serve as the important parameters for the description of the irreversibility and upper critical fields, respectively. Moreover, rho (0) , mu (0) H (irr) (0) and mu (0) H (c2) (0) values of the bulk samples are theoretically calculated using the extrapolation method at absolute zero temperature (T = 0 K). Likewise, the xi and lambda values are inferred from mu (0) H (irr) (0) and mu (0) H (c2) (0) values obtained, respectively. At the same time, activation energies of the samples studied are determined from thermally activated flux creep (TAFC) model. The results obtained indicate that the pinning mechanism, electrical and superconducting properties of the samples enhance with the increment of the Lu addition up to level of 0.1 wt% beyond which these properties start to deteriorate systematically and in fact reach the local minimum points for the sample doped with 0.9 wt% Lu due to the degradation of pinning ability, density, crystallinity and connectivity between grains. Similarly, the presence of the magnetic field results in the reduction of these properties as a consequence of the decrement in the flux pinning in the samples prepared. Namely, the maximum of 94.6 K and of 92.5 K are observed for the sample doped with 0.1 wt% Lu whereas the minimum temperature values are obtained to be about 71.2 and 50.3 K for the sample doped with 0.9 wt% Lu. In fact, the value decreases to 20.5 K with the increment in the applied magnetic field up to 6 kG. Besides, the flux pinning energies of the samples decrease with ascending applied magnetic field. The pure sample has the flux pinning energy of 15,211 K at zero field while the maximum and minimum values are found to be about 16,722 K and 2,058 K for the samples added with 0.1 and 0.9 wt% Lu, respectively. The U (0) of 158 K at 6 kG applied magnetic field is obtained for the latter sample, showing that this sample exhibits much weaker flux pinning, lesser crystallinity and connectivity between grains compared to the other samples produced as a result of the stronger pair-breaking mechanism. The dissipation mechanism is also discussed by means of the magnetic field dependence of the activation energy.Öğe Investigation of Lu effect on YBa2Cu3O7-delta superconducting compounds(Springer, 2013) Türköz, Mustafa Burak; Nezir, Saffet; Terzioğlu, Cabir; Varilci, Ahmet; Yıldırım, GürcanThis study reports the effect of Lu addition on the microstructural and superconducting properties of YBa2LuxCu3O7-delta (Y123) superconducting samples with x = 0, 0.1, 0.3, 0.5 and 0.7 by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), electron dispersive X-ray (EDX), electrical resistivity and transport critical current density (J(c)) measurements. The samples prepared by the liquid ammonium nitrate and derivatives are exposed to various annealing time (20, 40 and 60 h) and temperature (950, 960 and 970 A degrees C), and the best ambient for the sample fabrication is determined to be 970 A degrees C for 20 h. Zero resistivity transition temperatures (T-c), critical current densities (J(c)), variation of transition temperatures, hole-carrier concentration, grain size, lattice parameter, surface morphology, element distribution, crystallinity and resistivity (at room temperature) values of the bulk superconducting samples prepared at 970 A degrees C for 20 h are compared with each other. T-c and J(c) values of the samples are inferred from the dc resistivity and the critical current measurements, respectively. The results show that the T-c value of the pure sample is about 90.6 K while the sample doped with 0.1 wt% Lu has the maximum T-c value (92.5 K). However, beyond x = 0.1, the T-c value is observed to decrease toward to 83.5 K with increment in the Lu addition. Similarly, the J(c) values measured are found to reduce from 142 to 76 A/cm(2) with the addition. Moreover, XRD measurements show that both pure and Lu-doped samples exhibit the polycrystalline superconducting phase with the changing intensity of diffraction lines and contain Y123 and Y211 phase, confirming the incorporation of Lu atoms into the crystalline structure of the samples studied. At the same time, comparing of the XRD patterns of samples, the intensity ratio of the characteristic (110) and (013) peaks on the sample doped with 0.1 wt% Lu is more than that on the other samples prepared. Additionally, SEM images display that the sample doped with 0.1 wt% Lu obtains the best crystallinity, grain connectivity and largest grain size whereas the worst surface morphology is observed for the maximum doped sample (x = 0.7). Further, EDX results demonstrate that the Lu atoms doped are successfully introduced into the microstructure of the Y123 samples studied and the maximum Cu element level is observed for the sample doped with 0.1 wt%, explaining that why this sample obtains the best superconducting properties compared to others. According to all the results obtained, it is concluded that the 0.1 wt% Lu addition into the Y123 system improves the microstructural and superconducting properties of the samples studied.Öğe Refinement of fundamental characteristic properties with homovalent Er/Y partial replacement of YBa2Cu3O7-y ceramic matrix(Elsevier Science SA, 2021) Erdem, Ümit; Türköz, Mustafa Burak; Yıldırım, Gürcan; Zalaoğlu, Yusuf; Nezir, SaffetIn the current work, the effect of partial substitution of Er-sites for the Y-sites in the bulk YBa2Cu3O7-y (YBCO) crystal system on the fundamental superconducting, electrical, crystallinity and structural morphology features is examined together with the reasons by means of powder X-ray diffraction (XRD), temperature-dependent electrical resistivity (rho-T), scanning electron microscopy (SEM), electron dispersive X-ray (EDX) investigations and deduced calculation parameters. All the experimental test results show that the erbium impurities are suc-cessfully substituted by the yttrium sites in the bulk Y-123 crystal system, confirmed by sensitively the EDX and rho-T measurement results. Moreover, it is found that all the fundamental characteristic quantities improve with the increment in the Er/Y partial substitution level up to the value of x = 0.03 beyond which the features tend to degrade dramatically. In this respect, the bulk Y1-xErxBa2Cu3O7-y ceramic compound prepared within the molar ratio of x = 0.03 crystallizes in the orthorhombic space group P-4/ mmm with a little distortion due to the refinement in the crystallinity quality, crystallite growth, oxygen ordering degree, scattering mechanism, intra and intergrain boundary couplings, grain alignment distributions and orientations. The XRD results show that the optimum erbium content enables to develop seriously the fundamental crystallographic features (lattice strain, lattice cell constants, crystallite size distribution, dislocation density ratio, oxygen concentrations in the unit cells) of Y-123 crystal structure. However, the excess Er/Y substitution leads to enhance considerably the systematic structural problems and inhomogeneous distribution of strains (formed by the structural defects) in the YBCO crystal structure. Thus, the phase transition from orthorhombic to tetragonal (structural O-T transition) crystal structure is observed. In fact, the XRD result displays that the trivalent Er3+ particles may partially be replaced by the divalent Cu2+ host atoms in the bulk Y-123 crystal structure after the critic substitution level of x = 0.03. The optimum Er concentration causes to form more thermodynamically activated super-electrons in the homogeneous superconducting cluster percentages in the paths due to the induced polaronic effect, and accordingly the intrinsic overdoped nature of Y-123 ceramic system transits into optimally doped state. Similarly, the erbium ions enable to increase the mobile hole carrier concentration and homogeneities in the oxidation state of superconducting grains. Namely, the amplitude of pair wave function (Psi=Psi(0)e(-i phi)) is strength enough to form bipolarons in the polarizable lattices and localize of densities of electronic states (DOS) at Fermi level. SEM investigations picture that the surface morphology view and crystallinity quality develop remarkably with the increment in the erbium content up to the critical dopant level of x = 0.03 where the sample exhibits the best grain alignment orientations, densest and smoothest surface morphology with the combination of lowest porous and largest particle distributions well linked each other. All in all, this comprehensive work based on the analysis of Er/Y partial replacement mechanism along the YBa2Cu3O7- y ceramic matrix may open up a newly/novel and feasible area for the advanced engineering, heavy-industrial technology and large-scale applications of type-II superconducting materials. (C) 2021 Elsevier B.V. All rights reserved.Öğe The structural and electrical study of Lu-Doped YBCO system(Springer, 2013) Soylu, Nevin; Yahşi, C. C.; Altıntaş, Sevgi Polat; Nezir, Saffet; Terzioğlu, CabirWe have prepared a series of bulk superconducting samples with the nominal composition of Y1-xLuxBa2 Cu3Oy (where x = 0.0, 0.05, 0.1, 0.2 and 0.3) by the conventional solid-state reaction method. The samples were characterized structurally by means of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry. The electrical transport properties of the samples were analyzed in the temperature range between 20-140 K under magnetic fields up to 2 T. The superconducting transition temperature, T-c, and activation energy, U-0, were found to decrease with Lu-doping and with increase in applied magnetic field.