Yazar "Liu, Hui" seçeneğine göre listele
Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Co-pyrolytic mechanisms and products of textile dyeing sludge and durian shell in changing operational conditions(Elsevier Science Sa, 2021) Liu, Hui; Zhang, Junhui; Liu, Jingyong; Chen, Laiguo; Huang, Hongyi; Evrendilek, FatihTextile dyeing sludge (TDS) is a highly toxic solid waste whose co-pyrolysis can jointly achieve waste reduction and recovery of value-added products. This study aimed to fill the knowledge gaps about the co-pyrolysis mechanisms and products (gases and solids) and their dynamics in response to the atmosphere type, blend ratio, heating rate, temperature, and their interactions. The high temperature pyrolysis (>720 degrees C) in the CO2 atmosphere appeared as the best option for the waste reduction. The (co-)pyrolysis in the CO2 atmosphere enhanced S-containing air pollutants, CO, and CH4 but reduced NOx. The interaction effect between TDS and durian shell (DS) residues promoted the productions of furan and acid compounds and inhibited the productions of aromatic, phenolic, and N-containing compounds. The atmosphere type affected the type and strength of the reactions involved in the production of biochars. Our findings provide practical and new insights into the optimization of energy generation, product recovery, and emission control during the (co-)pyrolysis.Öğe Co-thermal conversion, atmosphere, and blend type controls over heavy metals in biochars and bottom slags of textile dyeing sludge and durian shell(Elsevier Sci Ltd, 2023) Liu, Hui; Chen, Xi; Wei, Xipeng; Chen, Zhibin; Yuan, Haoran; Evrendilek, Fatih; Huang, ShengzhengThe co-thermal conversions of textile dyeing sludge ((TDS) with biomass may be turned into a feasible and green technology to valorize energy and products, but the transformation behavior of heavy metals remains unclear. This study aimed to quantify the migrations and distributions of HMs in biochars and bottom slags and their environmental risks in response to the co-pyrolysis and co-combustion of durian shell (DS) and TDS, atmosphere type, blend ratio, and temperature. The co-combustion interaction of DS and TDS raised the residual HM contents of the bottom slag. Co-pyrolysis reduces the environmental risks of HMs of the TDS, and the effect of CO2 atmosphere is better. In 80N(2)20O(2), Cr, Zn, and Cu in the TDS bottom slag had the highest leaching toxicity concentrations at 900 degrees C. At 800 degrees C, the leaching toxicity concentrations of HMs were Cr > Cu > Zn > Mn in TDS. The O-2 concentration and atmosphere type did not significantly affect the HM morphology and transformation. K increased the temperature of converting solid-phase Ni to slag-phase NiO in DS sample and affected the transformation temperature and strength of Ni, Zn, and Pb in other sample at the high temperature. The combined results of all the three optimizations of HM contents, forms, and risks pointed to add 50 % DS in the N-2 atmosphere and add 50 % DS in 50N(2)50O(2) and 80CO(2)20O(2) atmospheres as the optimal co-pyrolysis/combustion settings, respectively.Öğe Combustion parameters, evolved gases, reaction mechanisms, and ash mineral behaviors of durian shells: A comprehensive characterization and joint-optimization(Elsevier Sci Ltd, 2020) Liu, Hui; Liu, Jingyong; Huang, Hongyi; Evrendilek, Fatih; He, Yao; Büyükada, MusaIn this work, the characteristic parameters, evolved gases, reaction mechanisms, and ash conversions of the durian shell (DS) combustion were quantified coupling thermogravimetry, mass spectroscopy, Fourier transform infrared spectroscopy, and X-ray fluorescence spectra analyses. The main stage of the DS combustion occurred between 130.2 and 481.9 degrees C. Its activation energy value estimated by the three model-free methods ranged from 192.82 to 213.24 kJ/mol. The average enthalpy, entropy and Gibbs free energy changes were in the ranges of 177.74-178.47 kJ/mol, 32.00-34.25 J/(mol.K), and 200.79-207.74 kJ/mol, respectively. The third-order (F3) model best described its most likely reaction mechanism. The main evolved gas was CO2, with no SO2 emission. The ash from the DS combustion belonged to K-type ash. 618 degrees C and 8 K/min were determined as the optimal operation conditions to jointly optimize the multiple targets of the combustion responses.Öğe Dynamic insights into combustion drivers and responses of water hyacinth: Evolved gas and ash analyses(Elsevier Sci Ltd, 2020) Huang, Hongyi; Liu, Jingyong; Liu, Hui; Hu, Jinwen; Evrendilek, FatihNon-food biomass feedstocks owing to their advantages have come to the forefront as the efforts have been intensified to develop cleaner energy sources and technologies in the face of global climate change. This study aimed to dynamically characterize the combustion drivers and responses including the gas emission and ash deposition risks for roots (WHR) and stems and leaves (WHSL) of water hyacinth. Their combustion processes consisted of the four sequential stages of the water evaporation, the combustions of volatiles and fixed carbon, and the degradation of minerals. The WHR combustion had a higher total heat release (2140.6-4226.7 J/g) than did the WHSL combustion (1255.6-3110.6 J/g). In terms of the Flynn-Wall-Ozawa method, the average activation energy was estimated at 167.42 and 172.41 kJ/mol for WHR and WHSL, respectively. The reaction mechanisms of the volatiles and fixed carbon combustion stages were best elucidated by the F1 (f(alpha) = 1- a) and F3 (f(alpha) = (1- alpha)(3)) models for WHR and the F3 (f(alpha) = (1- alpha)(3)) and F1.5 (f(alpha) = (1- alpha)(1.5)) models for WHSL, respectively. CO2 was the main evolved gas for both WHR and WHSL and exhibited the fastest response to temperature. Evolved S-containing gases (SO2 and COS) (0.13% for WHR and 0.12% for WHSL) were extremely low. The WHSL ash had a higher risk of slagging and fouling than did the WHR ash. Our findings can provide insights into the cleaner and optimal production of the water hyacinth combustion. (C) 2020 Elsevier Ltd. All rights reserved.Öğe Multiple drivers, interaction effects, and trade-offs of efficient and cleaner combustion of torrefied water hyacinth(Elsevier, 2021) Huang, Hongyi; Liu, Jingyong; Chen, Laiguo; Evrendilek, Fatih; Liu, Hui; Chen, ZhibinDeveloping cleaner and affordable alternatives to the sole reliance on fossil fuels has intensified efforts to improve the thermochemical conversion property of the second-generation lignocellulosic biomass. This study aimed to explore the effects of the two torrefaction temperatures (200 and 300 degrees C), the two reaction atmospheres (N-2/O-2 and CO2/O-2), and the three heating rates (5, 10, and 15 degrees C/min) on the combustion regime of water hyacinth (WH). Decomposition behaviors, reaction kinetics, thermodynamics, and mechanisms, evolved emissions and functional groups, and fuel microstructure properties were quantified. The deoxygenation and dehydration reactions acted as the main drivers of the torrefaction process, with the peak degree of deoxygenation of 8621% for WH torrefied at 300 degrees C (WH300). WH300 significantly reduced the quantity of oxygen-containing functional groups and altered the fuel microstructure properties. The order of the decomposition rates of the pseudo-components were hemicellulose > cellulose > lignin for both WH and WH torrefied at 200 degrees C (WH200) and cellulose > lignin > hemicellulose for WH300. The average activation energy fell from 197.71 to 195.71 kJ/mol for WH, 287.90 to 195.97 Itilmol for WH200, and 226.92 to 184.94 kyrnol for WH300 when the atmosphere changed from N-2/O-2 to CO2/O-2. The heating rate exerted a stronger control on their combustion behaviors than did the reaction atmosphere. CO2 , NO, and NO2 emissions dropped by 46.0, 53.1, and 65.9% for WH200 and 29.6, 42.8, and 62.5% for WH300, respectively, when compared to WH. 473.7 degrees C, 5 degrees C/min, and the CO2/O-2 atmosphere were the optimal settings for the maximized combustion efficiency. 717.1 degrees C was determined as the optimal setting for the minimized combustion emissions. Our study can yield new insights into the large-scale and cleaner combustion of the torrefied water hyacinth. (C) 2021 Elsevier B.V. All rights reserved.Öğe Optimizing bioenergy and by-product outputs from durian shell pyrolysis(Pergamon-Elsevier Science Ltd, 2021) Liu, Hui; Liu, Jingyong; Huang, Hongyi; Evrendilek, Fatih; Wen, Shaoting; Li, WeixinDurian shells (DS) constitute an abundant agricultural waste stream with a large yield in Southeast Asia and higher heating value. This study aimed to quantify the bioenergy and by-product outputs of the DS pyrolysis as a function of heating rate (5, 10, 20, and 40 K/min) combining thermogravimetric, Fourier transform infrared spectrometry, and pyrolysis-gas chromatography/mass spectrometry analyses. The joint optimizations of multiple responses were also performed as a function of a changing biofeedstock, heating rate, and temperature. The DS pyrolysis composed of three stages, with the main decomposition stage occurring between 141.2 and 616.5 degrees C. The increased heating rate promoted the DS pyrolysis, while the pyrolysis reaction was more complete at the low heating rate. Activation energy of the pyrolysis reaction was estimated to vary between 221.58 and 245.71 kJ/mol. The major gases evolved from the DS pyrolysis included CO2, CO, CH4, H2O, carbonyl compounds, acids, and NH3. The major pyrolytic byproducts were aromatic and alicyclic hydrocarbons, phenolic substances, and N-containing compounds. Joint optimizations pointed to 999 degrees C, 5 K/min, and aboveground water hyacinth biomass, or DS as the most optimal operational conditions. Our findings provide insights into the optimization and scale-up for the industrial pyrolytic applications of DS. (C) 2020 Elsevier Ltd. All rights reserved.Öğe Performance and mechanism of bamboo residues pyrolysis: Gas emissions, by-products, and reaction kinetics(Elseiver, 2022) Zhang, Gang; Feng, Qiuyuan; Hu, Jinwen; Sun, Guang; Evrendilek, Fatih; Liu, Hui; Liu, JingyongThe performances and reaction kinetics of the bamboo shoot leaves (BSL) pyrolysis were characterized integrating thermogravimetry, Fourier transform infrared spectroscopy, and pyrolysis-gas chromatography/mass spectrometry analyses. The high volatiles and low ash, N, and S contents of BSL rendered its pyrolysis suitable for bio-oil generation. The main mass loss of BSL pyrolysis occurred in the devolatilization stage between 200 and 550 C. The peak temperatures of pseudo-hemicellulose, cellulose and lignin pyrolysis in BSL were 248.04, 322.65 and 383.51 C, respectively, while their average activation energies estimated by Starink method were 144.29,175.79 and 243.02 kJ/mol, respectively. The one-dimensional diffusion mechanism (f (alpha) = 1/(2 alpha)) best elucidated the hemicellulose reaction. The cellulose (f (alpha) = 0.74 (1 - alpha)[-ln (1 - alpha)]-13/37) and lignin (f (alpha) = 0.35 (1 - alpha)[-ln (1 - alpha)]-13/7) reactions were best described by the nucleation mechanisms. The estimated kinetic triplets accurately predicted the pyrolysis process. 619.3 C and 5 C/min were determined as the optimal pyrolytic temperature and heating rate. The C-containing gases were dominant among the non-condensable gases evolved from the pyrolysis. The NO(x )precursors (NH3 and HCN) were found more important than NO emission in pollution control. 2,3-dihydrobenzofuran, (1-methylcyclopropyl) methanol, heptanal, acetic acid, and furfurals were the main pyrolytic by-products. BSL-derived biochar is a relatively pure carbon-rich material with extremely low N and S content. The BSL pyrolysis yielded a promising performance, as well as value-added by-products to be utilized in the fields of bioenergy, fragrance, and pharmaceuticals.Öğe Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses(Pergamon-Elsevier Science Ltd, 2020) Huang, Hongyi; Liu, Jingyong; Liu, Hui; Evrendilek, Fatih; Büyükada, MusaThis study aimed to quantify the pyrolytic bioenergy potential of water hyacinth roots (WHR), stems and leaves (WHSL) by assessing their physicochemical properties, pyrolysis performances, kinetics, and thermodynamics. Their gas emissions and other by-products were also detected using thermogravimetry-Fourier transform infrared spectroscopy and pyrolysis gas chromatography/mass spectrometry analyses. The WHR and WHSL pyrolysis consisted of the three consecutive stages of the moisture removal, devolatilization, and the decomposition of residuals. The main pyrolysis temperature varied between 200 and 600 degrees C. The elevated heating rate raised both initial devolatilization and peak temperatures and shortened the reaction times of the thermochemical conversions of both samples. According to the comprehensive pyrolysis index, WHSL outperformed WHR. The average activation energy estimates pointed to a lower decomposition cost for WHSL (172.09-173.09 kJ/mol) than WHR (230.11-232.06 kJ/mol). The fluctuating thermodynamic parameters indicated a complicated pyrolysis mechanism for WHR and WHSL. The main gases evolved from the WHR and WHSL pyrolysis in decreasing order were CO2, C=O, C-O, SO2, C=C, H2O, CH4, and CO. The main pyrolytic by-products were phenols (19.2%), and furans (12.4%) for WHR and nitrides (11.9%), and phenols (10%) for WHSL. Our results provide insights into scaling-up bioenergy potential, value-added by-products, and emission controls based on the pyrolysis of the water hyacinth biomass parts.Öğe Technical and environmental feasibility of gas-solid decontamination by oxygen-enriched co-combustion of textile dyeing sludge and durian shell(Elsevier Sci LTD, 2022) Liu, Hui; Liu, Jingyong; Huang, Hongyi; Wen, Yixing; Evrendilek, Fatih; Ren, Mingzhong; He, YaoThe urgent need to reduce greenhouse gas emissions entails a cleaner waste treatment technology. The oxy-fuel co-combustion can recover energy and reduce the waste stream. This study aims to fill the knowledge gaps about the impacts of atmosphere type, blend ratio, oxygen concentration, and their interactions on the co-combustion behaviors and products of durian shell (DS) and textile dyeing sludge (TDS). The higher oxygen concentration reduced the reaction temperature, advanced the inhibition temperature, and promoted the decomposition rate with no significant effect on the residual mass. The N2 atmosphere resulted in a better co-combustion performance than did the CO2 one. The increased addition of DS improved the co-combustion performance. At the same oxygen concentration, the maximum absorption intensity of CO was higher in the N2/O2 than CO2/O2 atmosphere. Similarly, the maximum absorption intensities of C-O(H) and C=O were higher in the CO2/O2 than N2/O2 atmosphere. The co-combustion did not increase the issues of slagging and scaling. The main components of DS, TDS, and their blend ash with 50% DS and 50% TDS included MgO, Fe2O3, and Fe2O3, respectively.Öğe Turning the co-combustion synergy of textile dyeing sludge and waste biochar into emission-to-bottom slag pollution controls toward a circular economy(Pergamon-Elsevier Science Ltd, 2022) Huang, Hongyi; Liu, Jingyong; Liu, Hui; Evrendilek, Fatih; Zhang, Gang; He, YaoThe co-combustion performance of textile dyeing sludge (TDS) and waste biochar (BC) was explored in terms of their decomposition behaviors, gas emission patterns, bottom slag characteristics, and elemental transformations. The decompositions of both TDS and BC were divided into four stages, with the largest heat release from the fixed carbon combustion. Their synergy effect occurred in the range of 530-700 degrees C. The average activation energy was 172.13 kJ/mol for TDS, 250.31 kJ/mol for BC, and lowest (169.41 kJ/mol) for 60TDS40BC (60% TDS and 40% BC). The 40% BC addition decreased total SO2 emission by 70.79% but increased total NO emission by 19.43% when compared to the TDS mono-combustion at 1000 degrees C. The 40% BC addition inhibited the formations of sulfoxide, sulfone/sulfonic acid, and amine nitrogen, as well as the decomposition of sulfate but promoted the decomposition of pyridinic nitrogen. The main mineral phases of the bottom slags at 700 degrees C included Fe2O3 and CaSO4 for TDS, while that for 60TDS40BC was CaSO4, NaCl, and K5Al5Si3O16. Our results provide new ideas for the resource utilization and pollution control of TDS and BC, make the disposal of TDS cleaner and more efficient, and help to promote the sustainable development of the environment.