Yazar "Koundal, Deepika" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Automated COVID-19 detection in chest X-ray images usingfine-tuned deep learning architectures(Wiley, 2022) Aggarwal, Sonam; Gupta, Sheifali; Alhudhaif, Adi; Koundal, Deepika; Gupta, Rupesh; Polat, KemalThe COVID-19 pandemic has a significant impact on human health globally. The illness is due to the presence of a virus manifesting itself in a widespread disease resulting in a high mortality rate in the whole world. According to the study, infected patients have distinct radiographic visual characteristics as well as dry cough, breathlessness, fever, and other symptoms. Although, the reverse transcription polymerase-chain reaction (RT-PCR) test has been used for COVID-19 testing its reliability is very low. Therefore, computed tomography and X-ray images have been widely used. Artificial intelligence coupled with X-ray technologies has recently shown to be more effective in the diagnosis of this disease. With this motivation, a comparative analysis of fine-tuned deep learning architectures has been made to speed up the detection and classification of COVID-19 patients from other pneumonia groups. The models used for this analysis are MobileNetV2, ResNet50, InceptionV3, NASNetMobile, VGG16, Xception, InceptionResNetV2 DenseNet121, which have been fine-tuned using a new set of layers replaced with the head of the network. This research work has carried out an analysis on two datasets. Dataset-1 includes the images of three classes: Normal, COVID, and Pneumonia. Dataset-2, in contrast, contains the same classes with more focus on two prominent pneumonia categories: bacterial pneumonia and viral pneumonia. The research was conducted on 959 X-ray images (250 of Bacterial Pneumonia, 250 of Viral Pneumonia, 209 of COVID, and 250 of Normal cases). Using the confusion matrix, the required results of different models have been computed. For the first dataset, DenseNet121 has obtained a 97% accuracy, while for the second dataset, MobileNetV2 has performed best with an accuracy of 81%.Öğe A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model(Pergamon-Elsevier Science Ltd, 2023) Tiwari, Shamik; Jain, Anurag; Sapra, Varun; Koundal, Deepika; Alenezi, Fayad; Polat, Kemal; Alhudhaif, Adi; Nour, MajidAutomatic screening approaches can help diagnose Cardiovascular Disease (CVD) early, which is the leading source of mortality worldwide. Electrocardiogram (ECG/EKG)-based methods are frequently utilized to detect CVDs since they are a reliable and non-invasive tool. Due to this, Smart Cardiovascular Disease Detection System (SCDDS) has been offered in this manuscript to detect heart disease in advance. A wearable device embedded with electrodes and Internet of Things (IoT) sensors is utilized to record the EKG signals. Bluetooth is used to send EKG signals to the smartphone. The smartphone transfers the signals through an Android app to a pre-trained deep learning-based architecture deployed on the cloud. The architecture analyzes the EKG signal, and a heart report is communicated to the patient and advises further preventive action. We offered an ensembled Convolution Neural Network architecture (ConvNet) and Convolution Neural Network architecture - Long Short-Term Memory Networks (ConvNet-LSTM) architecture to detect atrial fibrillation heartbeats automatically. The architecture utilizes a convolutional neural network and long short-term memory network to extract local correlation features and capture the front-to-back dependencies of EKG sequence data. MIT-BIH atrial fibrillation database was utilized to design the architecture and achieved an overall categorization accuracy of 98% for the test set's heartbeat data. The findings of this work show that the suggested system has achieved significant accuracy with the ensembling of models. Such models can be deployed in wearable devices and smartphones for continuous monitoring and reporting of the heart.Öğe SPOSDS: A smart polycystic ovary syndrome diagnostic system using machine learning(Pergamon-Elsevier Science Ltd, 2022) Tiwari, Shamik; Kane, Lalit; Koundal, Deepika; Jain, Anurag; Alhudhaif, Adi; Polat, KemalPolycystic Ovary Syndrome (PCOS) is a hormonal disorder that affects a large percentage of women of reproductive age. PCOS causes imbalanced or delayed menstrual cycles and produces high levels of the male hormone. The ovaries may create a significant number of little fluid-filled sacs (follicles) yet fail to discharge eggs regularly. The actual cause of PCOS is uncertain. However, early exposure and curing, as well as weight loss, may lower the threat of long-term complications. This study focuses on PCOS diagnosis based on a clinical dataset supplied by Kottarathil, accessible via its Kaggle repository. Non-invasive screening parameters are used to evaluate a range of machine learning approaches for screening PCOS patients without the use of invasive diagnostics. According to the findings of the experiments, the Random Forest (RF) method outperforms the other prominent machine learning algorithms with an accuracy of 93.25%. Further, the out-of-bag (OOB) error is utilized for assessing the prediction performance of RF.