Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Jiang, Shaojun" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Energetic, bio-oil, biochar, and ash performances of co-pyrolysis-gasification of textile dyeing sludge and Chinese medicine residues in response to K 2 CO 3, atmosphere type, blend ratio, and temperature
    (Science Press, 2024) Zhang, Gang; Chen, Zhiyun; Chen, Tao; Jiang, Shaojun; Eurendilek, Fatih; Huang, Shengzheng; Tang, Xiaojie
    Hazardous waste stream needs to be managed so as not to exceed stock- and rate-limited properties of its recipient ecosystems. The co-pyrolysis of Chinese medicine residue (CMR) and textile dyeing sludge (TDS) and its bio-oil, biochar, and ash quality and quantity were characterized as a function of the immersion of K 2 CO 3 , atmosphere type, blend ratio, and temperature. Compared to the mono-pyrolysis of TDS, its co-pyrolysis performance with CMR (the comprehensive performance index (CPI)) significantly improved by 33.9% in the N 2 atmosphere and 33.2% in the CO 2 atmosphere. The impregnation catalyzed the co-pyrolysis at 370 degrees C, reduced its activation energy by 77.3 kJ/mol in the N 2 atmosphere and 134.6 kJ/mol in the CO 2 atmosphere, and enriched the degree of coke gasification by 44.25% in the CO 2 atmosphere. The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds, its catalytic and secondary products, and its bio-oil yield by 66.19%. Its bio-oils mainly contained olefins, aromatic structural substances, and alcohols. The immersion of K 2 CO 3 improved the aromaticity of the co
  • Küçük Resim Yok
    Öğe
    Energetic, bio-oil, biochar, and ash performances of co-pyrolysis-gasification of textile dyeing sludge and Chinese medicine residues in response to K2CO3, atmosphere type, blend ratio, and temperature
    (Chinese Academy of Sciences, 2024) Zhang, Gang; Chen, Zhiyun; Chen, Tao; Jiang, Shaojun; Evrendilek, Fatih; Huang, Shengzheng; Tang, Xiaojie
    Hazardous waste stream needs to be managed so as not to exceed stock- and rate-limited properties of its recipient ecosystems. The co-pyrolysis of Chinese medicine residue (CMR) and textile dyeing sludge (TDS) and its bio-oil, biochar, and ash quality and quantity were characterized as a function of the immersion of K2CO3, atmosphere type, blend ratio, and temperature. Compared to the mono-pyrolysis of TDS, its co-pyrolysis performance with CMR (the comprehensive performance index (CPI)) significantly improved by 33.9% in the N2 atmosphere and 33.2% in the CO2 atmosphere. The impregnation catalyzed the co-pyrolysis at 370°C, reduced its activation energy by 77.3 kJ/mol in the N2 atmosphere and 134.6 kJ/mol in the CO2 atmosphere, and enriched the degree of coke gasification by 44.25% in the CO2 atmosphere. The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds, its catalytic and secondary products, and its bio-oil yield by 66.19%. Its bio-oils mainly contained olefins, aromatic structural substances, and alcohols. The immersion of K2CO3 improved the aromaticity of the co-pyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO2 to form magnesium-silicate. The co-pyrolytic biochar surfaces mainly included -OH, -CH2, C=C, and Si-O-Si. The main phases in the co-pyrolytic ash included Ca5(PO4)3(OH), Al2O3, and magnesium-silicate. © 2022

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim