Yazar "Huang, Wenxiao" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Oxy-fuel co-combustion dynamics of phytoremediation biomass and textile dyeing sludge: Gas-to-ash pollution abatement(Elsevier, 2022) Wu, Xieyuan; Liu, Jingyong; Wei, Zebin; Chen, Zihong; Evrendilek, Fatih; Huang, WenxiaoThe environmental pressures of major wastes in the circular economies can be abated leveraging the complementarity and optimal conditions of their co-combustion. The oxy-fuel co-combustion of phytoremediation biomass of Sedum alfredii Hance (SAH) and textile dyeing sludge (TDS) may be a promising choice for sustainable CO2 capture and a waste-to-energy conversion. This study characterized and quantified their co-combustion performances, kinetics, and interactions as a function of blend ratio, atmosphere type, and temperature. With a focus on the characteristic el-ements of SAH (Ca, K, Zn, and Cd) and TDS (Al and S), changes in the mineral phases and ash melting and slagging trends of K2O-Al2O3-SiO2 and CaO-Al2O3-SiO2 systems were quantified. The Zn and Cd residual rates of the co-combustion of 75% SAH and 25% TDS rose by 58.52% and 5.93%, respectively, in the oxy-fuel atmosphere at the 30% oxygen concentration, relative to the mono-combustion of SAH in the air atmosphere. The co-combustion in the oxy-fuel atmosphere at the 20% oxygen concentration delayed the release peaks of SO2, C2S, and H2S, while the Ca-rich SAH captured S in TDS through the formation of CaSO4. Our findings provide new and practical insights into the oxy-fuel co-combustion toward the enhanced co-circularity.Öğe Reaction mechanisms and product patterns of Pteris vittata pyrolysis for cleaner energy(Pergamon-Elsevier Science Ltd, 2021) Song, Yueyao; Hu, Jinwen; Evrendilek, Fatih; Büyükada, Musa; Liang, Guanjie; Huang, Wenxiao; Liu, JingyongThe pyrolysis behaviors, kinetics, evolved products, and optimization of aboveground (PA) and below ground (PB) biomass of Pteris vittata were quantified. The pyrolysis performance in response to the elevated heating rate was improved by 21.21 and 16.79 times for PA and PB, respectively. CH4 and CO emissions were produced more from the pyrolysis of PB than PA. The increased pyrolysis temperatures of PA and PB led to the three consecutive releases of C=O (alcohol, ketone, acid, and furan), C-O (alcohol, phenol, and ether), and CO2, CH4, H2O, and CO. The formations of NH3 and HCN were more sensitive to the temperature rise with PB than PA. PA produced alcohol/ketone and acids by 1.81 and 1.32 times what PB produced. PB produced furan and carbohydrate/alkene by 1.56 and 2.52 times what PA produced. PA appeared as a more suitable feedstock than PB and showed an optimal pyrolysis behavior at 545 degrees C and 45 degrees C/min. Our findings can provide the basis for characterizing the process and environmental benignity of the hyperaccumulator pyrolysis. (c) 2020 Elsevier Ltd. All rights reserved.