Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gupta, Vijay" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Approximation for Certain Class of Durrmeyer-Stancu Operators in Compact Disks
    (Southeast Asian Mathematical Soc-Seams, 2014) Gupta, Vijay; Karsli, Harun
    The present article deals with the approximating properties and Voronov-skaya type results with quantitative estimates for a certain class of complex Durrmeyer-Stancu polynomials attached to analytic functions on compact disks. Also the exact order of approximation is estimated.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On convergence of q-Chlodovsky-type MKZD operators
    (2013) Karslı, Harun; Gupta, Vijay
    In the present paper, we define a new kind of MKZD operators for functions defined on [0, bn], named q-Chlodovsky-type MKZD operators, and give some approximation properties.
  • Küçük Resim Yok
    Öğe
    Rate of convergence of nonlinear integral operators for functions of bounded variation
    (Springer, 2008) Karslı, Harun; Gupta, Vijay
    The aim of this paper is to study the behavior of the operators T(lambda) defined by T(lambda)(f;x) = (a)integral(b)K(lambda)(t-x,f(t))dt, x epsilon < a,b >. Here we estimate the rate of convergence at a point x, which has a discontinuity of the first kind as lambda -> lambda(0). This study is an extension of the papers [9] and [13], which includes Bernstein operators, Beta operators, Picard operators, Philips operators, Durrmeyer operators, etc. as special cases.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Rate of pointwise convergence of a new kind of gamma operators for functions of bounded variation
    (Pergamon-Elsevier Science Ltd, 2009) Karslı, Harun; Gupta, Vijay; İzgi, Aydın
    In the present paper we investigate the behavior of the operators L-n(f, x), defined as Ln(f : x) = (2n +3)!x(n+3)/n!(n+2)! integral(infinity)(0) t(n)/(x + t)(2n+4)f(t)dt, x > 0, and give an estimate of the rate of pointwise convergence of these operators on a Lebesgue point of bounded variation function f defined on the interval (0, infinity). We use analysis instead of probability methods to obtain the rate of pointwise convergence. This type of study is different from the earlier studies on such a type of operator. (C) 2008 Elsevier Ltd. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Some approximation properties by q-Szász-Mirakyan-Baskakov-Stancu operators
    (2012) Gupta, Vijay; Karslı, Harun
    In the present paper we propose the Stancu type generalization of q-Szász-Mirakyan-Baskakov operators (see e. g. [12, 6]). We apply q-derivatives, and q-Beta functions to obtain the moments of the q-Szász-Mirakyan-Baskakov-Stancu operators. Here we estimate some direct approximation results for these operators.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim