Yazar "Farman, Kiran" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza saliva L.)(Elsevier, 2019) Ahmad, Fiaz; Farman, Kiran; Waseem, Muhammad; Rana, Rashid Mehmood; Nawaz, Muhammad Amjad; Baloch, Faheem ShehzadCytosine DNA methylation (5mC) is an epigenetic mark that regulates gene expression in plant responses to environmental stresses. Zinc-finger protein (ZFP) is the largest family of DNA-binding transcription factors that also plays an essential role in eukaryote. In plant we have already identified and characterized different useful ZFP-genes. While, the main objective of this research was to observe and identify more targeted stress responsive genes of ZFPs epigenetically throughout genome in rice for the first time. A comprehensive correlation analysis was performed through methylated DNA immunoprecipitation (MeDIP)-chip hybridization in rice under salt and osmotic stresses. High salinity and drought are two major abiotic hazards that are destroying the crop world-wide. As a result, Through-out genome 14 unique stress responsive transcription factors of ZFP-genes with varying level of methylation and expression under two conditions (control vs. stress) were isolated. All the identified genes were confirmed from different databases for their specific structure, cis-regulatory elements, phylogenetic analysis, and synteny analysis. Moreover, the tissue-specific expression patterns, and expression under abiotic and phytohormones stresses were also investigated. Phylogenetically all the genes were divided into 6 distinct subgroups with Arabidopsis and orthologous proteins were find-out through synteny analysis. Available RNA-seq data in response to various phytohormones provided hormone inducible gene expression profile. Through Reverse Transcriptase qPCR (RT-qPCR) analysis tissue-specific expression in shoot and root over various time points against salt and osmotic stresses exhibited the diverse expression patterns of identified genes. Overall, the present study providing a foundation for in-depth characterization of identified genes and to further understand the epigenetic role of DNA methylation for genes expression and environmental stresses regulation in higher plant.Öğe High-throughput phytochemical characterization of non-cannabinoid compounds of cannabis plant and seed, from Pakistan(Pakistan Botanical Soc, 2018) Ahmad, Fiaz; Abbas, Tanveer; Farman, Kiran; Akrem, Ahmed; Saleem, Muhammad Asif; Iqbal, Muhammad Umar; Baloch, Faheem ShehzadThe herbs are the natural resources for the infinite phenolic compounds that are used in pharmaceutical industry. These herbs are of significant importance due to their beneficial usage for the human health. Here, we studied a common herbs Cannabis sativa, an important member of the family Cannabaceae for phytochemical characterization. The methanol extract of whole Cannabis plant and seed was analyzed for the identification of non-cannabinoid compounds through High Performance Liquid Chromatography (HPLC) technique, because the non-cannabinoid compounds have not been much studied in C. sativa. These compounds are very useful in different diseases, used in cosmetics and as antioxidant agent. HPLC analysis revealed the presence of a variety of non-cannabinoid compounds including Quercetin, Gallic acid, p-Coumaric acid, m-Coumaric acid, Caffeic acid, Cinnamic acid, Ferulic acid, Benzoic acid and Kampferol. Furthermore, Quercetin was observed with high concentration in whole plant sample, whereas high Gallic acid and absence of m-coumaric acid was noted in the Cannabis seed. It was also observed that plant samples were with higher concentration of cinnamic acid as compared to seed. The Caffeic acid, Benzoic acid and Ferulic acid were in low concentration in both Cannabis plant and seed samples. Kampferol is another important non-cannabinoid compound that was also quantified in both samples. This research will be providing a foundation for further molecular characterization of Cannabis plant and seed for their beneficial usage.