Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Brown, Steven S." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Nitrogen, aerosol composition, and halogens on a Tall Tower (NACHTT): overview of a wintertime air chemistry field study in the front range urban corridor of Colorado
    (Amer Geophysical Union, 2013) Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Öztürk, Fatma
    The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT-11
    (Amer Geophysical Union, 2013) VandenBoer, Trevor C.; Brown, Steven S.; Murphy, Jennifer G.; Keene, William C.; Young, Cora J.; Öztürk, Fatma
    A negative-ion proton-transfer chemical ionization mass spectrometer was deployed on a mobile tower-mounted platform during Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) to measure nitrous acid (HONO) in the winter of 2011. High resolution vertical profiles revealed (i) HONO gradients in nocturnal boundary layers, (ii) ground surface dominates HONO production by heterogeneous uptake of NO2, (iii) significant quantities of HONO may be deposited to the ground surface at night, (iv) daytime gradients indicative of ground HONO production or emission, and (v) an estimated surface HONO reservoir comparable or larger than integrated daytime HONO surface production. Nocturnal integrated column observations of HONO and NO2 allowed direct evaluation of nocturnal ground surface uptake coefficients for these species (gamma(NO2, surf)=2x10(-6) to 1.6x10(-5) and gamma(HONO, surf)=2x10(-5) to 2x10(-4)). A chemical model showed that the unknown source of HONO was highest in the morning, 4x10(6)moleculescm(-3)s(-1) (600pptvh(-1)), declined throughout the day, and minimized near 1x10(6)moleculescm(-3)s(-1) (165pptvh(-1)). The quantity of surface-deposited HONO was also modeled, showing that HONO deposited to the surface at night was at least 25%, and likely in excess of 100%, of the calculated unknown daytime HONO source. These results suggest that if nocturnally deposited HONO forms a conservative surface reservoir, which can be released the following day, a significant fraction of the daytime HONO source can be explained for the NACHTT observations.

| Bolu Abant İzzet Baysal Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Bolu Abant İzzet Baysal Üniversitesi Kütüphanesi, Bolu, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim