Yazar "Bozkurt, Buket S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Real-time cell analysis of the cytotoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts(Mosby-Elsevier, 2012) Malkoç, Sıddık; Öztürk, Fırat; Çörekçi, Bayram; Bozkurt, Buket S.; Hakkı, Sema S.Introduction: The aim of this study was to evaluate the cytotoxic effects of orthodontic mini-implants on gingival fibroblasts and osteoblasts. Methods: The orthodontic mini-implants used in this study were Orthodontic Mini Implant (Leone, Florence, Italy), MTN (MTN, Istanbul, Turkey), AbsoAnchor (Dentos, Daegu, South Korea), IMTEC Ortho (3M Unitek, IMTEC, Ardmore, Okla), VectorTAS (Ormco, Glendora, Calif). The materials were incubated in Dulbecco's modified eagle's culture medium for 72 hours according to ISO 10993-5 standards (surface area-to-volume ratio of the specimen to cell-culture medium, 3 cm(2)/mL). A real-time cell analyzer (xCELLigence, Roche Applied Science, Mannheim, Germany; ACEA Biosciences, San Diego, Calif) was used to evaluate cell survival. After seeding 200 mu L of the cell suspensions into the wells of the E-plate 96, gingival fibroblasts were treated with bioactive components released by the metallic materials and monitored every 15 minutes for 190 hours. For the proliferation experiments, the statistical analyses used were 1-way analysis of variance and Tukey-Kramer multiple comparisons tests. Results: There was no significant differences between the human gingival fibroblast cell indexes of the control and study groups (P>0.05). When evaluated at 27 and 96 hours, only the VectorTAS mini-implants showed statistically significant decreases in the M3T3 cell index (P < 0.001) compared with the control group. No significant differences were found among the control and all study groups (P>0.05). Furthermore, the Leone and MTN mini-implants showed statistically significant decreases (P < 0.001) at 190 hours. Also, the VectorTAS mini-implants demonstrated a significant decline (P < 0.05) at the same time in the M3T3 cell index. Conclusions: These findings provide fundamental knowledge and new insights for future design and development of new biocompatible titanium alloys for orthodontic mini-implants and temporary anchorage devices. (Am J Orthod Dentofacial Orthop 2012;141:419-26)Öğe SDF-1 modulates periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs)(Wiley, 2021) Hakkı, Sema S.; Bozkurt, Buket S.; Hakkı, Erdoğan Eşref; Karaöz, Erdal; Ünlü, Ali; Kayış, Seyit AliBackground/Objectives In this in vitro study, the effects of Stromal cell-derived factor-1 (SDF-1) was evaluated on the periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs) functions. Material and Methods Real-time cell analyzer-single plate (RTCA-SP) was employed for proliferation, and RTCA-dual purpose (DP) was utilized for pdl-MSCs migration potential treated with different SDF-1 concentrations (0, 0.1, 1, 10, 100, 200, and 400 ng/ml). Based on the dose-response findings, 10 ng/ml SDF-1 was used for further mRNA experiments. RNAs isolated at 6 and 24 h were checked using quantitative RT-PCR for mineralized tissue-associated genes including type I collagen (COL I), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2). cRNA was synthesized for 6 h, and whole-genome array analysis was performed for over 47.000 probes. Data were subjected to quantile normalization before analysis. Results Increased proliferation and migration were observed in pdl-MSCs treated with 0.1, 1, and 10 ng/ml SDF-1. Increased COL I was observed at both time points: 6 and 24 h. While there was no significant change for OCN, OPN, and Runx2 at 6 h, SDF-1 up-regulated OCN and OPN, but down-regulated Runx2 mRNA expressions at 24 h. IL-8 and ESM1 genes were differentially expressed over twofold when the pdl-MSCs were exposed to SDF-1 at whole-genome array analysis. IL-8 induction was confirmed with RT-PCR. Conclusion Findings of this study displayed that SDF-1 modulated pdl-MSCs which were important for periodontal regeneration, inducing migration and proliferation, and regulating extracellular matrix synthesis in favor of the formation of new attachment.