Yazar "Arslan, Merve" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Clonal propagation and synthetic seed production from nodal segments of Cape Gooseberry (Physalis Peruviana L.), a tropical fruit plant(2015) Yücesan, Bahtiyar Buhara; Mohammed, Aliyu; Arslan, Merve; Gürel, EkremPhysalis peruviana L. contains polyphenols and carotenoids with antiinflammatory and antioxidant activities used against diabetes. To establish an efficient regeneration system using nodal segments excised from 4-week-old germinated seedlings, direct plant regeneration, without additional rooting stage, was achieved on LS medium containing 0.5 mg/L 6-benzylaminopurine (BAP), kinetin (KIN), thidiazuron (TDZ), or gibberellic acid (GA3), alone or in combination with 0.25 mg/L indole-3-acetic acid (IAA) or indole-3- butyric acid (IBA), after 2 weeks of incubation. The highest mean numbers of shoots and well-developed roots were obtained on LS medium containing solely 0.5 mg/L TDZ, producing 5.3 shoots and 3.3 roots per explant after 2 weeks of incubation. Direct shoot and root formation were also recorded on LS medium containing no plant growth regulators. Due to the high regeneration capacity of nodal segments, synthetic seed production was also investigated using the sodium alginate (NaAlg) encapsulation technique. Four different matrix compositions, including NaAlg with or without LS medium containing 3% (w/v) sucrose alone or in combination with 0.5 mg/L abscisic acid (ABA) as a growth retardant were tested for the regrowth performance of synthetic seeds after storage at 4 °C up to 70 days. The highest regrowth (100%) was observed at 28 days of storage for all matrix compositions. All plantlets were acclimatized to the soil and then progressively transferred to the field. The fruits were harvested after 5 months. This study might provide a new insight through protocol development for micropropagation and synthetic seed production of many solanaceous species with economical relevance.Öğe Selection and Preparation of Explants for the Clonal Propagation of Horticultural Plants in Plant Factory Systems(Springer Singapore, 2022) Tigrel, Ahmet; Arslan, Merve; Arıcı, Beyza; Yücesan, BuharaExplant preference is a key factor for efficient and sustainable plant propagation under in vitro conditions. Plant genotype and structure must be well observed and identified for the best explant which may differ in the axillary bud breakings using terminal buds on stems located above ground or specialized/underground stems such as bulbs scales, base plates of corms, and the shoot tips of suckers. Since plant factory systems are aimed at uniform and cost-effective propagation systems, determination of explant type and culture conditions are the most critical factors for the establishment of shoot multiplication rate. In this chapter, several horticulture plants including house plants (Monstera, Philodendron, Begonia, etc.), and fruit trees (Aronia, banana, walnut, etc.) used in commercial-scale production in plant factories were investigated for the understanding of the nature of explants as per culture conditions. This phenomenon is also highly correlated with effective surface sterilization. Since plant factories rely on an automation system for particular crops, replenishment of starting material in each cloning cycle prevents the emergence of undesirable traits due to the somaclonal variations. This study reports a comparative and in situ analysis of explant choice for the scalable vitro-plant productions. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022.