Yazar "Alam, Khan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Appraising the characteristics of particulate matter from leather tanning micro-environments, their respirational risks, and dysfunctions amid exposed working cohorts(Springer, 2023) Sarwar, Fiza; Alam, Khan; Öztürk, Fatma; Koçak, Mustafa; Malik, Riffat NaseemLeather tanneries are known for chemical laden work environments and pulmonic complaints among workers. This study presents an analysis of tannery micro-environments emphasizing on size-based variation in composition of particulate matter and consequent respiratory dysfunctions. Qualitative (FTIR, SEM-EDX) and quantitative assessment (elemental composition, carbon forms) of PM10 and 2.5 has been employed. For lung function evaluation of workforce, spirometry with ATS proprieties was used. The peak concentrations of both PM10 and 2.5 have been found at PU, FU, and B&S. The LTCR for only Cr is high for both PM2.5 and PM10. HQ was high for Al, Cr, and Mn for both PM sizes. The maximum organic and secondary organic carbon in PM10 was found at FU and in PM2.5 at PU. The varied PM composition included carbohydrate (B&S, WMO), ether (S&S, P&S) and hydroxyl (B&S, S&S, P&S), proteins, polyenes, vinyl groups (S&S, P&S, FU), alcohols (PU and FU), and aldehyde present at PU. These results were armored by high organic and total carbon concentrations for the same sites. Therefore, PM are classified into biogenic (carbonaceous: microbial and animal remains) from PU and WMO, incidental (industrial, mixt physico-chemical character) from PU, FU, WMO, B&S and P&S, and geogenic (crustal mineral dust) from RHT, B&S, PU, and P&S. Furthermore, increase in metal concentrations in PM10 (Cr, Mn, Co, Ni, V, As, Be, Ba, and Cd) and PM2.5 (As, Pb) while TC, OC, and SOC in PM2.5 caused depreciation overall lung function. The exposure to biogenic and incidental PM nature are key cause of pulmonic dysfunction.Öğe In-depth characterization of particulate matter in a highly polluted urban environment at the foothills of Himalaya–Karakorum Region(Springer, 2024) Zeb, Bahadar; Alam, Khan; Huang, Zhongwei; Öztürk, Fatma; Wang, Peng; Mihaylova, Lyudmila; Khokhar, Muhammad FahimIn recent years, the rising levels of atmospheric particulate matter (PM) have an impact on the earth’s system, leading to undesirable consequences on various aspects like human health, visibility, and climate. The present work is carried out over an insufficiently studied but polluted urban area of Peshawar, which lies at the foothills of the famous Himalaya and Karakorum area, Northern Pakistan. The particulate matter with an aerodynamic diameter of less than 10 µm, i.e., PM10 are collected and analyzed for mineralogical, morphological, and chemical properties. Diverse techniques were used to examine the PM10 samples, for instance, Fourier transform infrared spectroscopy, x-ray diffraction, and scanning electron microscopy along with energy-dispersive x-ray spectroscopy, proton-induced x-ray emission, and an OC/EC carbon analyzer. The 24 h average PM10 mass concentration along with standard deviation was investigated to be 586.83 ± 217.70 µg/m3, which was around 13 times greater than the permissible limit of the world health organization (45 µg/m3) and 4 times the Pakistan national environmental quality standards for ambient PM10 (150 µg/m3). Minerals such as crystalline silicate, carbonate, asbestiform minerals, sulfate, and clay minerals were found using FTIR and XRD investigations. Microscopic examination revealed particles of various shapes, including angular, flaky, rod-like, crystalline, irregular, rounded, porous, chain, spherical, and agglomeration structures. This proved that the particles had geogenic, anthropogenic, and biological origins. The average value of organic carbon, elemental carbon, and total carbon is found to be 91.56 ± 43.17, 6.72 ± 1.99, and 102.41 ± 44.90 µg/m3, respectively. Water-soluble ions K+ and OC show a substantial association (R = 0.71). Prominent sources identified using Principle component analysis (PCA) are anthropogenic, crustal, industrial, and electronic combustion. This research paper identified the potential sources of PM10, which are vital for preparing an air quality management plan in the urban environment of Peshawar. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.