Yazar "Özdemir, Emrah" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biomass estimation of individual trees for coppice-originated oak forests(Springer, 2019) Özdemir, Emrah; Makineci, Ender; Yılmaz, Ersel; Kumbaşlı, Meriç; Calışkan, Servet; Beşkardeş, Vedat; Keten, AkifIn this study, individual tree-biomass equations are developed for the different biomass components (foliage, branch, bark, stem, and total aboveground biomass) of Quercus frainetto Ten., Quercus cerris L., and Quercus petraea (Matt.) Liebl. species, which are the main oak species in coppice-originated oak forests. This research was conducted in northern Turkish Thrace, an important coppice-oak area. A total of 474 oak trees at different development stages over different sites were destructively sampled to obtain biomass models of the major oak species in the region. Two main biomass models are established to estimate the biomass components: according to the diameter at breast height (DBH) alone and according to the d(2)h variable, which is the combined DBH and tree height. The goodness-of-fit statistics of the models are calculated to compare these models. The models that use the DBH alone as an independent variable explain 68-95% of the variation in the biomass of the tree components. After adding the tree height to the model, the accuracy for the bark-, stem-, and total aboveground-biomass estimates increased, while the accuracy of the foliage- and branch-biomass estimates decreased. Different oak species have different biomass components depending on their development stages. The amount of biomass components in the total aboveground biomass and foliage decreased from 20% (SDF) to 4% (LDF), the amount of bark decreased from 17% (SDF) to 12% (LDF), and the amount of stems increased from 42% (SDF) to 66% (LDF) when increasing the mean DBH of the sample plots.Öğe Effects of parent material, stand type and oak species on defoliation of coppice-originated oak (Quercus spp.) forests in Northern Turkish Thrace(Univ Austral Chile, Fac Ciencias Forestales, 2017) Kumbaşlı, Meriç; Makineci, Ender; Keten, Akif; Beşkardeş, Vedat; Özdemir, EmrahCases of significant defoliation in oak (Quercus spp.) forests have been reported in Turkey and throughout the world. Oak trees are important in Turkish forests and forestry and cover vast pieces of land in Thrace. In this study, in a quest to determine the general health condition of pure oak forests in Northern Turkish Thrace, the defoliation rate of tree crowns was evaluated for 8,769 trees in 336 sample plots corresponding to different geological parent materials, regions, oak species and stand types. The defoliation rates were designated and assessed based on the criteria of the European Union Forest Health Monitoring Program (UNECE-ICP Forests). The defoliation rate was, to a significant extent, affected by stand type, the geological parent material, and oak species. In general, 47 % of trees exhibited defoliation. The highest ratio of defoliation was found in Kirklareli Region, where water deficit was the highest, and the parent material was schist-calcschist. Medium diameter forests (MDF, mean dbh: 8-20 cm, ratio of defoliated trees = 65 %) among stand types, and sessile oaks (ratio of defoliated trees = 53 %) among oak species, had the highest defoliation rates. Achieved results demonstrated that the defoliation classes in observed oak stands have a significant relation with variables concerning stand types, oak species and geological parent materials.